92 research outputs found

    Non-Stationary Process Monitoring for Change-Point Detection With Known Accuracy: Application to Wheels Coating Inspection

    Get PDF
    International audienceThis paper addresses the problem of monitoring online a non-stationary process to detect abrupt changes in the process mean value. Two main challenges are addressed: First, the monitored process is nonstationary; i.e., naturally changes over time and it is necessary to distinguish those “regular”process changes from abrupt changes resulting from potential failures. Second, this paper aims at being applied for industrial processes where the performance of the detection method must be accurately controlled. A novel sequential method, based on two fixed-length windows, is proposed to detect abrupt changes with guaranteed accuracy while dealing with non-stationary process. The first window is used for estimating the non-stationary process parameters, whereas the second window is used to execute the detection. A study on the performances of the proposed method provides analytical expressions of the test statistical properties. This allows to bound the false alarm probability for a given number of observations while maximizing the detection power as a function of a given detection delay. The proposed method is then applied for wheels coating monitoring using an imaging system. Numerical results on a large set of wheel images show the efficiency of the proposed approach and the sharpness of the theoretical study

    DĂ©tection statistique d'une anomalie Ă  partir de projections tomographiques

    Get PDF
    - La détection d'une anomalie à partir de quelques projections tomographiques bruitées est considérée d'un point de vue statistique. La scène bidimensionnelle étudiée est composée d'un environnement inconnu, considéré comme un paramètre de nuisance, et d'une éventuelle anomalie. Un test invariant optimal est alors proposé pour détecter l'anomalie

    Camera model identification based on the generalized noise model in natural images

    Get PDF
    International audienceThe goal of this paper is to design a statistical test for the camera model identification problem. The approach is based on the generalized noise model that is developed by following the image processing pipeline of the digital camera. More specifically, this model is given by starting from the heteroscedastic noise model that describes the linear relation between the expectation and variance of a RAW pixel and taking into account the non-linear effect of gamma correction.The generalized noise model characterizes more accurately a natural image in TIFF or JPEG format. The present paper is similar to our previous work that was proposed for camera model identification from RAW images based on the heteroscedastic noise model. The parameters that are specified in the generalized noise model are used as camera fingerprint to identify camera models. The camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio Test is presented and its statistical performances are theoretically established. In practice when the model parameters are unknown, two Generalized Likelihood Ratio Tests are designed to deal with this difficulty such that they can meet a prescribed false alarm probability while ensuring a high detection performance. Numerical results on simulated images and real natural JPEG images highlight the relevance of the proposed approac

    Statistical decision methods in the presence of linear nuisance parameters and despite imaging system heteroscedastic noise: Application to wheel surface inspection

    Get PDF
    International audienceThis paper proposes a novel method for fully automatic anomaly detection on objects inspected using an imaging system. In order to address the inspection of a wide range of objects and to allow the detection of any anomaly, an original adaptive linear parametric model is proposed; The great flexibility of this adaptive model offers highest accuracy for a wide range of complex surfaces while preserving detection of small defects. In addition, because the proposed original model remains linear it allows the application of the hypothesis testing theory to design a test whose statistical performances are analytically known. Another important novelty of this paper is that it takes into account the specific heteroscedastic noise of imaging systems. Indeed, in such systems, the noise level depends on the pixels’ intensity which should be carefully taken into account for providing the proposed test with statistical properties. The proposed detection method is then applied for wheels surface inspection using an imaging system. Due to the nature of the wheels, the different elements are analyzed separately. Numerical results on a large set of real images show both the accuracy of the proposed adaptive model and the sharpness of the ensuing statistical test

    Generalized signal-dependent noise model and parameter estimation for natural images

    Get PDF
    International audienceThe goal of this paper is to propose a generalized signal-dependent noise model that is more appropriate to describe a natural image acquired by a digital camera than the conventional Additive White Gaussian Noise model widely used in image processing.This non-linear noise model takes into account effects in the image acquisition pipeline of a digital camera. In this paper, an algorithm for estimation of noise model parameters from a single image is designed. Then the proposed noise model is applied with the Local Linear Minimum Mean Square Error filter to design an efficient image denoising method

    Camera model identification based on DCT coefficient statistics

    Get PDF
    International audienceThe goal of this paper is to design a statistical test for the camera model identification problem from JPEG images. The approach relies on the camera fingerprint extracted in the Discrete Cosine Transform (DCT) domain based on the state-of-the-art model of DCT coefficients. The camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio Test is presented and its performances are theoretically established. For a practical use, two Generalized Likelihood Ratio Tests are designed to deal with unknown model parameters such that they can meet a prescribed false alarm probability while ensuring a high detection performance. Numerical results on simulated and real JPEG images highlight the relevance of the proposed approach

    Individual camera device identification from JPEG images

    Get PDF
    International audienceThe goal of this paper is to investigate the problem of source camera device identification for natural images in JPEG format. We propose an improved signal-dependent noise model describing the statistical distribution of pixels from a JPEG image. The noise model relies on the heteroscedastic noise parameters, that relates the variance of pixels’ noise with the expectation considered as unique fingerprints. It is also shown in the present paper that, non-linear response of pixels can be captured by characterizing the linear relation because those heteroscedastic parameters, which are used to identify source camera device. The identification problem is cast within the framework of hypothesis testing theory. In an ideal context where all model parameters are perfectly known, the Likelihood Ratio Test (LRT) is presented and its performance is theoretically established. The statistical performance of LRT serves as an upper bound of the detection power. In a practical identification, when the nuisance parameters are unknown, two generalized LRTs based on estimation of those parameters are established. Numerical results on simulated data and real natural images highlight the relevance of our proposed approach. While those results show a first positive proof of concept of the method, it still requires to be extended for a relevant comparison with PRNU-based approaches that benefit from years of experience

    An explicit closed-form solution to the limited-angle discrete tomography problem for finite-support objects

    Full text link
    An explicit formula is presented for reconstructing a finite-support object defined on a lattice of points and taking on integer values from a finite number of its discrete projections over a limited range of angles. Extensive use is made of the discrete Fourier transform in doing so. The approach in this article computes the object sample values directly as a linear combination of the projections sample values. The well-known ill-posedness of the limited angle tomography problem manifests itself in some very large coefficients in these linear combinations; these coefficients (which are computed off-line) provide a direct sensitivity measure of the reconstruction samples to the projections samples. The discrete nature of the problem implies that the projections must also take on integer values; this means noise can be rejected. This makes the formula practical. © 1998 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 9, 174–180, 1998Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35065/1/14_ftp.pd

    Amélioration de la qualité de radiographies numériques par correction des dégradations dues au processus d'acquisition

    Get PDF
    Une radiographie permet d'obtenir une projection 2-D des structures externes et internes d'un objet. Dans ce papier, nous montrons, qu'en s'appuyant sur un modèle physique de formation de la radiographie et sur une caractérisation des différents éléments du dispositif d'acquisition, qu'une radiographie permet d'accéder à une mesure quantitative des longueurs traversées par les rayons X

    Statistical Detection of LSB Matching Using Hypothesis Testing Theory

    Full text link
    This paper investigates the detection of information hidden by the Least Significant Bit (LSB) matching scheme. In a theoretical context of known image media parameters, two important results are presented. First, the use of hypothesis testing theory allows us to design the Most Powerful (MP) test. Second, a study of the MP test gives us the opportunity to analytically calculate its statistical performance in order to warrant a given probability of false-alarm. In practice when detecting LSB matching, the unknown image parameters have to be estimated. Based on the local estimator used in the Weighted Stego-image (WS) detector, a practical test is presented. A numerical comparison with state-of-the-art detectors shows the good performance of the proposed tests and highlights the relevance of the proposed methodology
    • …
    corecore